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A B S T R A C T   

Large, severe wildfires continue to burn in frequent-fire adapted forests but the mechanisms that contribute to 
them and their predictability are important questions. Using a combination of ground based and remotely sensed 
data we analyzed the behavior and patterns of the 2020 Creek Fire where drought and bark beetles had pre-
viously created substantial levels of tree mortality in the southern Sierra Nevada. We found that dead biomass 
and live tree densities were the most important variables predicting fire severity; high severity fire encompassed 
41% of the area and the largest high severity patch (19,592 ha) comprised 13% of total area burned. Areas with 
the highest amounts of dead biomass and live tree densities were also positively related to high severity fire patch 
size indicating that larger, more homogenous conditions of this forest characteristic resulted in adverse, 
landscape-scale fire effects. The first two days of the Creek Fire were abnormally hot and dry but weather during 
the days of the greatest fire growth was largely within the normal range of variation for that time of year with 
one day with lower windspeeds. From September 5 to 8th the fire burned almost 50% of its entire area and fire 
intensity patterns inferred from remotely sensed brightness-temperature data were typical except on September 
6th when heat increased towards the interior of the fire. Not only was the greatest heat concentrated away from 
the fire perimeter, but a significant amount of heat was still being generated within the fire perimeter from the 
previous day. This is a classic pattern for a mass fire and the high amount of dead biomass created from the 
drought and bark beetles along with high live tree densities were critical factors in developing mass fire behavior. 
Operational fire behavior models were not able to predict this behavior largely because they do not include post- 
frontal combustion and fire-atmosphere interactions. An important question regarding this mass fire is if the tree 
mortality event that preceded it could have been avoided or reduced or was it within the natural range of 
variation for these forests? We found that the mortality episode was outside of historical analogs and was 
exacerbated by past management decisions. The Creek Fire shows us how vulnerable of our current frequent-fire 
forest conditions are to suffering high tree mortality and offering fuel conditions capable of generating mass fires 
from which future forest recovery is questionable because of type conversion and probable reoccurring high 
severity fire.   

* Corresponding author. 
E-mail address: sstephens@berkeley.edu (S.L. Stephens).   

1 These authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Forest Ecology and Management 

journal homepage: www.elsevier.com/locate/foreco 

https://doi.org/10.1016/j.foreco.2022.120258 
Received 4 March 2022; Received in revised form 21 April 2022; Accepted 26 April 2022   

mailto:sstephens@berkeley.edu
www.sciencedirect.com/science/journal/03781127
https://www.elsevier.com/locate/foreco
https://doi.org/10.1016/j.foreco.2022.120258
https://doi.org/10.1016/j.foreco.2022.120258
https://doi.org/10.1016/j.foreco.2022.120258
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foreco.2022.120258&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Forest Ecology and Management 518 (2022) 120258

2

1. Introduction 

Fire is an integral component of most western US forests but more 
than a century of logging and attempted fire exclusion has dramatically 
changed frequent-fire forests (forests that used to burn every 35 years or 
less) by increasing tree densities, lowering average tree size, increasing 
the dominance of shade tolerant species, and increasing fuel loads 
(Safford and Stevens, 2017; Hagmann et al., 2021; Bernal et al., 2022). 
Wildfires burning in these forest conditions have increased in size and 
severity since the late 20th century (Miller et al., 2009; Stevens et al., 
2017) with climate change also being a factor (Abatzoglou and Williams, 
2016; Westerling, 2016). In addition to altered forests and climate 
change, recent drought/bark beetle induced tree mortality can also be a 
factor contributing to exacerbated wildfire behavior and effects (Ste-
phens et al., 2018). An important consideration with large-scale tree 
mortality is the potential to add long-burning, high fuel loads over 
extensive areas—fuel characteristics that match the criteria for mass 
fires. Mass fires (Finney and McAllister, 2011) can occur when large, 
continuous areas (several km2) are burning with high intensity for long 
durations (hours) as seen from multiple earthquake-related ignitions in 
urban areas and by incendiary bombing in war (Pitts, 1991). Mass fire 
behaviors result from the strong coupling between the fire and induced 
atmospheric circulations. 

Wildland fire behavior concerns the spread and energy release of 
free-burning vegetation but is complicated to predict. Modeling of fire 
behavior is traditionally focused on the characteristics of the flaming 
edge – its spread rate and fireline intensity as a direct function of fuel, 
weather, and topographic factors. All US operational fire behavior pre-
diction models are empirical, i.e., based on fitting of experimental data, 
and suffer from two principal limitations. First, feedbacks between the 
fire and its environment are not explicitly included, and second, heat 
release from combustion is restricted to only the short-lived flaming 
phase of fine fuel materials. Both of these limiting factors are inter-
connected because heat release over extensive areas (not thin flame 
zones) from all phases of combustion (flaming and non-flaming) can 
become coupled with atmospheric circulations that in-turn affect broad- 
scale fire behaviors for long periods. 

In most natural fuel configurations, fine fuel materials (<7.5 cm 
thick) have a short flaming time, typically varying from a few seconds 
for grass to perhaps a minute or two for small woody fuel particles 
(Nelson, 2003). Once flaming has ceased, burning of residual char (often 
called solid phase combustion) is not modeled but may constitute 30% of 
the pre-burn fuel mass (Di Blasi et al., 2001), and even a greater fraction 
of potential residual heat because of its high carbon content (Bab-
rauskas, 2006). Furthermore, combustion characteristics of large woody 
fuel (logs) and deep organic layers (duff) are completely neglected by 
current operational models but burn in widely varying fashion – ranging 
from little consumption, to long-duration smoldering with slow heat 
release rates, to flaming at high heat release rates. Environmental con-
ditions at the time of burning, including those induced by the fire itself, 
have a strong influence on the type of combustion and heat release rates 
in these fuels. One of the most salient fire-induced influences is local 
winds that effectively ventilate combustion of the long-burning mate-
rials. Thus, disparity between predicted and observed fire growth would 
be expected in fuel types with large or deep fuel materials that support 
deep combustion zones and long duration burning, occurring well 
beyond the passage of the flaming edge. 

Fuel conditions across vast areas of western US frequent-fire forests 
are now characterized by high concentrations of large woody material 
and deep organic layers on the forest floor because the historical regime 
of frequent fire has been disrupted by fire suppression and exclusion 
(Hagmann et al., 2021). Burning of these fuel complexes under wildfire 
conditions may exhibit many of the fire behaviors that are outside the 
range of modeling capabilities. Key indicators of such fires would be the 
deep zones of combustion covering large areas for long durations. Such 
fires could develop pyrocumulonimbus clouds towering to altitudes of 

10,000 m (Peterson et al., 2017) (Fig. 1), associated precipitation and 
downdrafts, and likely vorticity near the ground that further affects 
burning behaviors of the fuel complex in ways beyond the assumptions 
and capabilities of operational fire behavior models (Finney et al., 
2021). 

The overall goal of this project is to investigate extreme fire behavior 
and effects for a wildfire that occurred in an area affected by high tree 
mortality prior to the wildfire. We hypothesized that this pre-fire mor-
tality influenced the burning characteristics of the fire itself, as indicated 
by Goodwin et al. (2021), which may not be captured by current oper-
ational fire spread models. We integrated disparate spatial datasets in a 
novel analytical approach to address the following objectives: (1) 
quantify the extent and magnitude of tree mortality that preceded the 
2020 Creek Fire, (2) use a network of weather data collected before and 
during this fire to evaluate fire growth with local weather, and (3) 
predict the fire behavior and severity of the Creek Fire and compared it 
to its actual behavior. The overall goal of addressing these objectives is 
to understand drivers of extreme fire behavior in a relatively unique, but 
likely increasing, forest fuel condition and to assess the potential for 
current operational fire spread models to capture this behavior (see 
Fig. 2). 

Fig. 1. Locations (triangles) and names of RAWS stations used to create base-
line and Creek Fire weather conditions (top panel). Shaded teal area delineates 
the Creek Fire footprint and is superimposed on aerial photos provided by 
United States Department of Agriculture National Agriculture Imagery Program 
(2020). Bottom panel is a photograph of the plume created by the Creek Fire 
taken by Thalia Dockery. 
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2. Materials and methods 

2.1. Study site 

The Creek Fire burned in the southern Sierra Nevada mostly in the US 
Forest Service Sierra National Forest (Lat 37◦ 12′ 4′′ Long 119◦ 16′ 18′′). 
The fire burned 154,000 ha, which began in the early evening on 
September 4, 2020, in the Big Creek drainage between Shaver Lake and 
Huntington Lakes, California. The fire burned mostly in mixed conifer 
forests composed of ponderosa pine (Pinus ponderosa), sugar pine (Pinus 
lambertiana), white fir (Abies concolor), incense-cedar (Calocedrus 
decurrens), and California black oak (Quercus kelloggii). Prior to 1900, 
low- to moderate-severity fire ignited by lighting and Indigenous com-
munities was common across this area, with mean fire return intervals 
ranging from 5 to 20 years (Kilgore and Taylor, 1979; Caprio and 
Swetnam, 1993; Krasnow et al., 2017; Long et al., 2017,2021). This area 

of the southern Sierra Nevada has varied land-use practices including 
past wildfires, harvesting operations, recreation, and a limited amount 
of prescribed fire and other fuel treatments. The Creek Fire is one of the 
largest forest wildfires in modern California history. 

2.2. Fire weather 

We collected data from 7 Remote Automated Weather Stations in and 
around the Creek Fire footprint (Fig. 1) using the Program for Climate, 
Ecosystem, and Fire Applications and Fire and Aviation Application 
Information portals. For each station, we collected dry bulb temperature 
(◦C), relative humidity (%), and windspeed (km h− 1) from 2000 to 2020, 
specifically focusing on the common wildfire months of August–Oc-
tober. Station data were then processed within Fire Family Plus to 
extract hourly weather data for each day as well as hourly fire danger 
metrics including the energy release component (ERC) and burning 

Fig. 2. Map of surface fuel models within the Creek Fire footprint (outlined in black).  
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index (BI). ERC reflects the available energy per unit area within the 
flaming front, and by keeping fuel type constant, becomes an index of 
changing fuel moisture content. BI is related to the flame length 
(Bradshaw et al., 1983) and thus a product of both ERC and the fire rate 
of spread which is heavily influenced by wind speed. These indices from 
the National Fire Danger Rating System are derived from the Rothermel 
fire spread equation (Rothermel, 1972) for fuel model “G” which con-
tains four fuel size classes but applies only to fire behavior of a thin 
flaming front. Both metrics are positively related to fire severity 
(Lydersen et al., 2014, 2017). For each day, we averaged hourly weather 
data from 18:00 to 1:00 UTC (11:00–18:00 PST), which is when we 
expect weather to have the greatest influence on fire behavior. 

2.3. Fire growth and intensity 

To discern how fire spread and intensity varied with weather, we 
used the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the 
Joint Polar Satellite System (JPSS-1), which provides a 375-m resolution 
active fire product from the Fire Information for Resource Management 
System. From this point dataset, we interpolated daily Creek Fire pe-
rimeters similar to Briones-Herrera et al. (2020). Based on their 
methods, we aggregated points for each day of the Creek Fire in R (R 
Core Team 2020) at 1125 m, with a minimum of 3 points to be 
considered as part of the daily fire perimeter. Daily aggregated points 
were then applied with a convex hull algorithm using the sf package 
(Pebesma, 2018) to delineate fire perimeters. When two or more inter-
polated perimeters overlapped spatially and temporally, we combined 
those perimeters together. We also created maps of daily fire intensity by 
converting the VIIRS points into a 375-m resolution raster dataset. To do 
this, we estimated the Normalized Difference Brightness Temperature 
Index (NDBTI: Eq. (1)): 

NDBTI =
T4 − T5
T4 + T5

(1)  

where T4 and T5 represent the brightness temperature (Kelvin) of the 
VIIRS I4 and I5 bands, respectively (Waigl et al., 2017). Both bands are 
used in the active fire detection and characterization algorithm, with I4 
used as the predominant band for active fire detection and I5 used to 
compliment I4 by correcting saturated pixels. Elevated NDBTI values 
indicate higher fire intensity, which can distinguish active fire fronts 
from residual fire within a fire perimeter (Waigl et al., 2017). However, 
cases can arise where I4 < I5, resulting in a negative NDBTI value. This 
anomalous condition is an artifact of pixel saturation due to the low 
temperature threshold of the I4 band (367 K). In these cases, pixels were 
assigned a value equivalent to the maximum NDBTI value for a given 
day to better represent those pixels displaying high fire intensity. 

2.4. Fire severity 

Fire severity was estimated according to corrected methods estab-
lished by Parks et al. (2018), which uses the Google Earth Engine plat-
form to derive Landsat-based fire severity indices. We created a 30 m 
resolution raster of an extended assessment of the relativized delta 
normalized burn ratio (RdNBR) using Landsat imagery from the year 
prior to and after the start date of the Creek Fire (September 4, 2020). 
We then categorized RdNBR values into four fire severity classes (un-
changed, low, moderate, and high) based on thresholds for the com-
posite burn index described by Miller and Thode (2007). 

2.5. Forest structure and composition 

To quantify forest structure following drought and bark beetle at-
tacks (2012–2016) in the southern Sierra Nevada, we used live tree 
density (trees ha− 1) and live tree basal area (m2 ha− 1) from F3. F3 is a 
30-m resolution raster dataset that integrates Forest Inventory and 

Analysis data and uses the Forest Vegetation Simulator (FVS) to model 
initial stand conditions and project succession over time (Huang et al., 
2018). It then uses Field and Satellite for Ecosystem Mapping to 
incrorporate remotely-sensed data (Light Detection and Ranging data 
and Landsat imagery) to simulate spatiotemporal forest patterns across 
larger scales. Since tree mortality data were not available for F3, we used 
the change in live basal area from 2011 to 2016 to estimate the amount 
of snag basal area generated during the drought and bark beetle attacks. 
However, this approach means that mortality is only detectable if there 
was a decrease in basal area from 2011 to 2016. Predicted tree mortality 
between 2011 and 2016 is mainly driven by a stand density index-based 
mortality model within FVS which applies either background or density- 
dependent mortality rates when relative stand density index is below or 
above a minimum threshold, respectively (Dixon et al., 2008). F3 uses 
regionally-specific mortality models developed for FVS variants (Huang 
et al., 2018), with the western Sierra Nevada variant accounting for 
basal area distribution and species to estimate mortality rates for indi-
vidual trees (Dixon et al., 2008). However, this approach mainly attri-
butes mortality among smaller-sized trees without consideration for the 
spatially interactive processes that govern the species and size of trees 
that die following large-scale disturbances (Huang et al., 2019). Given 
that the region encompassing the Creek Fire footprint suffered the 
greatest mortality among large ponderosa pine that likely died from 
bark beetle-associated mortality (Fettig et al., 2019), our estimates of 
mortality and fuels generated by that mortality may be lower than what 
existed in this region prior to the Creek Fire.We converted snag basal 
area to a percent of total basal area within a given pixel. We also con-
verted snag basal area to dead biomass (Mg ha− 1) using aboveground 
biomass allometric equations provided by Knight et al. (2020) to esti-
mate dead fuels that were available to burn during the Creek Fire. 

2.6. Previous fire history 

Since previous wildfire activity can influence subsequent fire 
behavior and effects (Lydersen et al., 2019), we accounted for wildfire 
history within the Creek Fire footprint. Wildfire data from 1984 to 2017 
were obtained from Miller (2017), which included all wildfires >81 ha 
in size. Although this window omits three years prior to the Creek Fire, 
there were no additional wildfires within the Creek Fire footprint from 
2017 to 2020, totaling 23 wildfires prior to the Creek Fire. We converted 
fire perimeter polygons to a 30-m resolution raster dataset, with pixel 
values ranging from 0 to 3 indicating the number of times burned. 

2.7. Previous treatment history and topography 

Fuel reduction and forest restoration treatments can have an impact 
on fire behavior and effects (Stephens et al., 2009). We accounted for 
treatment history within the Creek Fire footprint by using the US Forest 
Service Activity Tracking System (FACTS), which contains a database of 
polygons delineating various treatments that are planned or completed. 
These treatments included fire hazard reduction, range improvement, 
reforestation, timber stand improvement, and timber harvesting. We 
chose to only include treatments that were completed from 2011 until 
the start date of the Creek Fire to evaluate how treatments implemented 
during the drought and bark beetle attacks may have impacted the Creek 
Fire. We converted polygons to a 30-m resolution raster dataset, with 
pixel values categorized as 0 or 1 to indicate the absence of presence of 
treatments, respectively. 

Topographic data were acquired from LANDFIRE and included 
elevation (m), slope (degrees), and aspect (degrees). We converted 
aspect to a categorical variable with breakpoints at 0◦/360◦, 90◦, 180◦, 
and 270◦ to correspond to northeast-facing, southeast-facing, southwest- 
facing, and northwest-facing slopes, respectively. All spatial data 
including forest structure and composition, previous fire history, pre-
vious treatment history, and topography were cropped and aligned with 
the extent of the fire severity raster we generated (~30 m resolution; 
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World Geodetic System 84). 

2.8. Modeled fire behavior 

The operational fire spread model ELMFIRE (Lautenberger, 2013, 
2017) was used to model initial progression of the Creek Fire from 
September 4 to 8, 2020 under conventional modeling assumptions that 
could have realistically been applied for real-time forecasting. ELMFIRE 
can be thought of as a gridded ensemble implementation of 2D 
Rothermel-based fire models such as FARSITE (Finney, 1998) with some 
differences in how the fire front is tracked and crown fire and spotting 
are estimated. ELMFIRE is uncoupled to the atmosphere. Although the 
Creek Fire’s specific origin area and time of ignition are not precisely 
known, (per Inciweb: National Wildfire Coordinating Group, 2020a) the 
ignition coordinates are taken as (− 119.272◦, 37.201◦) with an ignition 
time of 18:30 PDT on September 4th. Fire model inputs were specified as 
follows:  

• Topography and surface/canopy fuels: Pyrologix’ 2020 California 
Fuelscape data that are based on LANDFIRE 2016 Remap 2.0.0 (LF 
Remap). Calibration workshops with interagency fire and fuels 
personnel were held to develop a calibrated fuelscape that produces 
locally accurate fire behavior results. Since LF Remap does not 
included disturbances after 2016, spatial data on fuel disturbances 
(fire, fuel treatments, mortality, etc.) through early 2020 were then 
incorporated into the fuelscape to provide a fuelscape suitable for use 
in California during the 2020 fire season. Additional details are 
provided in Brough et al. (2020).Wind speed and direction, relative 
humidity, and temperature: Real Time Mesoscale Analysis (National 
Oceanic and Atmospheric Administration, 2020) which provides 
hourly estimates of sensible weather variables on a 2.5 km grid for 
the Continental US  

• Dead fuel moisture: Calculated from gridded Real Time Mesoscale 
Analysis data using NFDRS procedures (Bradshaw et al., 1983)  

• Live fuel moisture: Estimated from national fuel moisture database 
(United States Forest Service, 2020) 

ELMFIRE was run in a 1000-member ensemble with wind speed 
perturbed at ±3 mph, wind direction perturbed at ±15◦, spread rate 
adjustment factor varied from 0.8 to 1.2, and dead fuel moisture content 
perturbed by ±0.01%. Fire perimeter snapshots were extracted from the 
90th percentile ensemble member. The modeled growth of the Creek 
Fire was then compared to the actual fire perimeters to evaluate how 
well ELMFIRE predicted this event. 

2.9. Data analysis 

To evaluate how weather conditions during the Creek Fire compared 
to average weather conditions for the region, we measured the depar-
ture of weather conditions from the year the Creek Fire burned relative 
to previous years. To do this, we used the boot package in R (Canty and 
Ripley, 2017) to bootstrap 95% confidence intervals (1000 permuta-
tions) for each daily weather metric across all weather stations (Fig. 1) 
from 2000 to 2019 to establish a baseline of average weather conditions 
for the region. When then bootstrapped 95% confidence intervals across 
all weather stations for 2020 and compared if daily weather conditions 
during the Creek Fire overlapped with our baseline. We then compared 
fire weather days with the days of greatest fire spread and intensity 
during the Creek Fire. 

To determine if prior forest conditions influenced fire severity, we 
used the rpart package in R (Therneau and Atkinson, 2019) to create a 
categorical regression tree that identified environmental thresholds that 
were associated with Creek Fire severity. We extracted values of live tree 
density, percent basal area of snags, fuels (i.e., dead biomass), previous 
fire history, previous treatment history, and topography from our raster 
datasets using a 180-m grid of points across the Creek Fire footprint. A 

spacing of 180 m was chosen to minimize biases that arise from spatial 
autocorrelation associated with modeling fire severity (Kane et al., 
2015). This resulted in a sample size of 47,680 points. With those 
extracted values as explanatory variables to predict fire severity, we 
used a class method for splitting variables and a complexity parameter of 
0.01 (the increase in R2 value at each split that must occur for the split to 
be accepted). 

Since environmental conditions within an individual pixel insuffi-
ciently captures the spatial context in the surrounding area, which can 
be quite influential for fire effects (Povak et al., 2020), we used the 
patchwoRk package in R (Sanchez, 2019) to evaluate whether prior 
forest conditions at larger scales influenced the fire severity patterns 
observed during the Creek Fire. To characterize landscape-scale, high 
severity patterns within the Creek Fire footprint, we delineated patches 
of high severity using the PatchMorph tool (Girvetz and Greco, 2007; 
Sánchez Meador, 2019). This algorithm determines the size and shape of 
patches by specifying minimum patch width and maximum width of 
gaps within a patch. Similar to studies that used this tool to delineate 
patches of fire severity, we used a minimum patch width and maximum 
gap thickness of 90 m (or three 30-m pixels) and a minimum patch size 
of 0.5 ha (Collins and Stephens, 2010, Stevens et al., 2021). Using our 
regression tree model, we created a continuous map of pre-fire forest 
conditions across the entirety of the Creek Fire footprint and used the 
thresholds identified to aggregate patches of forest conditions (now 
referred to as forest condition departure classes; FCD) using the Patch-
Morph tool. We used the same patch constraints delineating high 
severity fire patches. We extracted the percent area from patches of FCD 
that intersected with high severity fire patches and used a 
log-transformed linear model to evaluate how the scale of FCD may have 
influenced high severity fire patch size. 

3. Results 

Baseline conditions from 2000 to 2019 from our weather station 
network (Fig. 1) averaged 19 ◦C, 38% relative humidity, and 6 km h− 1 

windspeed. Similar conditions were observed in 2020, with average 
temperature 19 ◦C, 35% relative humidity, and 5 km h− 1 windspeed. 
However, the first two days of the Creek Fire were abnormally hotter 
and drier (Fig. 3), with temperature 5 ◦C higher and relative humidity 
6% lower than baseline conditions (p < 0.05). Windspeed for those same 
days were within the normal range of variation. Despite initial hotter 
and drier conditions, we found that all weather metrics during the days 
of the greatest fire growth (September 6–September 8; Fig. 4) were 
largely within the normal range of variation for late summer and early 
autumn except for September 6th that had a lower windspeed. When 
evaluating metrics of fire danger, we found that the first five days of the 
Creek Fire, including the period of highest spread, were within the 
normal range of variation for both ERC and BI (p < 0.05; Fig. 5). 

From September 5 to September 8, the fire burned almost 50% of the 
entire Creek Fire footprint. Upon closer examination of these large fire 
growth days, the spatial distribution of fire intensity revealed some 
notable patterns (Fig. 6). On September 5th, fire intensity was typical, 
with heat concentrated on the perimeter of the active flaming front. 
However, on the largest growth day (September 6), fire intensity was 
reversed, with heat increasing towards the interior of the fire perimeter. 
Not only was the greatest heat concentrated away from the fire perim-
eter, but a significant amount of heat was still being generated within 
the fire perimeter from the previous day. This pattern reversed back to 
what we would expect from a typical active flaming front by September 
7th, with heat increasing towards the perimeter and heat from previous 
days subsiding. 

Prior to the Creek Fire, we found that the drought and bark beetle 
attacks from 2012 to 2016 created substantial levels of tree mortality 
and dead fuels. By 2016, average percent of snag basal area was 37%, 
with most (63%) of the area characterized by moderate tree mortality 
(25–75%). Tree mortality translated to an average of 65 Mg ha− 1 of dead 
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biomass, with the interquartile range spanning 25–92 Mg ha− 1. Despite 
increased levels of tree mortality, live tree density (trees > 2.5 cm 
diameter-at-breast-height) was still high in 2016, averaging 622 trees 
ha− 1. 

Dead biomass and live tree densities were the most important vari-
ables in our categorical regression tree analysis predicting fire severity. 
Dead biomass, in particular, had the strongest influence on pixel-level 
fire severity (Fig. 7), with > 46 Mg ha− 1 resulting in high severity. In 
areas below this level of dead biomass, the lowest tree densities (<232 
trees ha− 1) were associated with low severity, while the highest tree 
densities (>693 trees ha− 1) at low elevation (<2430 m) were associated 
with high severity. Intermediate levels of tree density (232–693 trees 
ha− 1) had mixed effects, producing moderate severity at lower elevation 
(<2430 m) and low severity at higher elevation (>2430 m). Our 
regression tree did not identify fire history or past forest treatments as 
factors related to fire severity. We also could not distinguish the 
contributing factors related to unchanged fire severity due to the small 
sample size of these observations. 

Among fire severity classes, high severity accounted for the greatest 
proportion of area (41%) burned in the Creek Fire (61,305 ha; Fig. 8), 
followed by moderate severity (35%; 52,768 ha), low severity (21%; 
30,917 ha), and unchanged (3%; 4920 ha). When aggregated as patches 
≥ 0.5 ha, we found that that the Creek Fire created very large contiguous 
areas of high severity, with the largest high severity patch (19,592 ha) 
comprising 13% of total area burned (Fig. 8). This is a stark contrast 
compared to the other fire severity strata, where the cumulative area of 
the largest patches across unchanged, low, and moderate severity only 
made up 1% of total area burned (245, 699, and 1014 ha, respectively). 

We used the thresholds identified in the regression tree analysis to 

map and analyze three forest condition departure (FCD) classes: FCD- 
high, FCD-mod, and FCD-low (Table 1). Prior to the Creek Fire, a ma-
jority (66%; 99,115 ha) of the landscape was composed of patches in the 
FCD-high class (dead biomass >46 Mg ha− 1 and >693 trees ha− 1), with 
the largest patch in this class being 83,645 ha in size. FCD-mod 
(407–693 trees ha− 1 and elevation <2430 m or 232–407 trees ha− 1) 
patches accounted for 21% of the landscape, followed by FCD-low 
(<232 trees ha− 1 or 407–693 trees ha− 1 and elevation > 2430 m) 
patches which represented 9% of the landscape. The distribution of FCD 
classes within individual patches of high severity (Fig. 9) revealed that 
FCD-high overwhelmingly burned at high fire severity (91%). While 
FCD-low and FCD-mod were interspersed in high severity patch areas, 
they consisted of <31% of total high fire severity area. Our linear model 
also revealed some notable patterns in the influence of forest conditions 
on landscape-level, high severity fire effects. Only FCD-high was posi-
tively related to high severity fire patch size (p = 0.029), indicating that 
larger, more homogenous conditions of this forest characteristic resulted 
in adverse, landscape-scale fire effects. 

3.1. Fire spread modeling 

Modeled fire spread was compared to actual fire growth with cu-
mulative MODIS (National Wildfire Coordinating Group, 2020b), VIIRS 
(National Wildfire Coordinating Group, 2020c), and IR (National 
Interagency Fire Center, 2020) fire detections at several discrete times 
between September 4th and September 8th, 2020 (Fig. 10). Using 
ELMFIRE, the rapid northward fire growth on September 5th and 
September 6th was not captured (Fig. 10b and c). The offshore wind 
event that impacted the region on September 7th and September 8th 

Fig. 3. Creek Fire weather departure from baseline 
conditions (2000–2019). Gray shaded areas are 
bootstrapped 95% confidence intervals for baseline 
weather conditions, while error bars are confidence 
intervals for 2020. Initiation date of Creek Fire 
denoted with dashed line and gold shaded area are 
the days of largest fire spread (September 6–8th). 
Colored dots represent significant (p < 0.05) de-
parture from baseline conditions, with red indi-
cating more severe fire weather, blue indicating 
lower, and black indicating observation falls within 
normal range of variation. (For interpretation of the 
references to colour in this figure legend, the reader 
is referred to the web version of this article.)   
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drove fire to the southwest. As shown in Fig. 10d and e, this was 
captured to some degree in the model, with some discrepancies in timing 
and extent of the run. 

4. Discussion 

This work identified several factors that contributed to the extreme 
behavior of the Creek Fire. Before discussing these factors, it should be 
stressed that the forests within the Creek Fire were already highly 
altered from fire suppression/exclusion and past harvesting. An exten-
sive 1911 inventory of mixed conifer forests to the southwest of the 
Creek Fire was compared to contemporary conditions and found drastic 
differences, particularly in tree density, canopy cover, the density of 
large trees, and the dominance of white fir that collectively increased 
fire hazards and reduced forest resilience (Stephens et al., 2015). These 
conditions alone have led to increased percentages of high severity fire 
and high severity patch size in the Sierra Nevada (Miller et al., 2009) 
even without the large-scale tree mortality that happened during the 
2012–2016 drought. Increasing burn severity and larger high severity 
patches is a problem because it can lead to a reduction in frequent-fire 
forests from type conversion to shrublands or other vegetation types 
(Coop et al., 2020). 

The Creek Fire destroyed at least 853 buildings and cost over $193 
million (2020 USD) to suppress (NIFC, 2020). While lightning ignited 
fires and Indigenous burning have been a part of this landscape for 
thousands of years (Caprio and Swetnam, 1993; Long et al., 2017,2021; 
Krasnow et al., 2017), the severity patterns within the Creek Fire are 
completely outside the historical range of variation of mixed conifer 
forests (Safford and Stevens, 2017). In similar mixed conifer forests in 
the Greenhorn Mountains southwest of the Creek Fire, the historic 
percentage of areas that experienced high severity fire was low and 
varied from 1% to 3% (Stephens et al., 2015). This is in stark contrast to 
the Creek Fire that was 41% high severity with the largest single, high 
severity patch (19,592 ha) comprising 13% of total area burned. 

Prior to the Creek Fire, a majority (66%) of the landscape was 
composed of patches in the FCD-high class. Our analysis revealed that 
FCD-high areas overwhelmingly burned at high fire severity (91%) 
during the Creek Fire. Our model also revealed some notable patterns 
regarding the influence of forest conditions on landscape-level, high 

Fig. 4. Creek Fire growth during the days of greatest fire spread. Colored 
polygons delineate daily fire growth, with percentage of growth relative to 
previous day indicated. Absolute size of growth (ha) for a given day indicated in 
parenthesis. The total amount of area burned during the four days of greatest 
fire spread consisted of almost 50% of the entire Creek Fire footprint. Shaded 
polygons in blue and outlined in gray delineate fire spread during subsequent 
days (9/9/2020–10/31/2020). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Creek Fire danger departure from baseline 
conditions (2000–2019). Gray shaded areas are 
bootstrapped 95% confidence intervals for baseline 
fire danger conditions, while error bars are confi-
dence intervals for 2020. Initiation date of Creek 
Fire denoted with dashed line and gold shaded area 
are the days of largest fire spread (September 
6–8th). Colored dots represent significant (p < 0.05) 
departure from baseline conditions, with red indi-
cating higher fire danger, blue indicating lower, and 
black indicating observation falls within normal 
range of variation. (For interpretation of the refer-
ences to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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severity fire effects. Only FCD-high was positively related to high 
severity fire patch size (p = 0.029), indicating that larger, homogenous 
FCD-high conditions resulted in adverse, landscape-scale fire effects. 
Indeed, the condition of this forest prior to and after the 2012–2016 
drought contributed to the behavior and effects of the Creek Fire. This 
assertion is also supported by the findings Goodwin et al. (2021), which 
demonstrated considerably greater potential energy release from wild-
fire following drought-related tree mortality. If drought and bark beetle 
induced mortality occurs in other areas of the Sierra Nevada (i.e. the 
northern Sierra Nevada) or elsewhere, we expect that similar fire effects 
could be produced. 

This research found that the largest factors that contributed to high 
severity fire within the Creek Fire were dead biomass and live tree 
densities. Dead biomass, in particular, had the strongest influence on 
pixel-level fire severity (Fig. 7). Although the first two days of the Creek 
Fire were abnormally hotter and drier, all weather metrics during the 
days of the greatest fire growth (September 6–September 8) were largely 
within normal ranges (except September 6th that had lower windspeeds, 
the day the fire grew the most). More evidence regarding fire weather is 
provided by the National Fire Danger indices: on September 6th the fire 

grew 637% (40,997 ha) relative to the previous day although BI and ERC 
were within normal range of variation (Figs. 3 and 5). This is an 
important result that provides further evidence that the fire behavior 
during its more severe burning periods did not conform to the standard 
line-fire modeling assumptions but was instead a function of more 
complex interactions of fuel and fire-induced atmospheric conditions. 
This strong fuels signal in the severity the Creek Fire was also corrob-
orated by an analysis of all large 2020 wildfires in California (Safford 
et al., 2022), which also identified the nearby 2020 Castle Fire as having 
a similar fuels-dominated signal. 

High rates of energy release over large areas are the preconditions for 
fire behaviors called firestorms or mass fires (Carrier et al., 1981,1985) 
that become dynamically dependent upon strong atmospheric in-
teractions. The strong coupling between the fire and atmosphere means 
that fire growth and behaviors along any portion of the burning area are 
themselves a function of large scale fire-induced atmospheric flows such 
as strong downdrafts, indrafts, and vorticity of the entire plume or lee- 
side edges. High surface winds and vortices along the fire front loft 
and transport burning material far from the fire edge and further expand 
fire growth. Recent analysis of RADAR revealed smoke plumes above the 

Fig. 6. Distribution of daily fire intensity using the Normalized Difference Brightness Temperature Index (NDBTI), where higher values indicate greater fire intensity. 
Days that experienced the largest growth relative to the previous day (>10%) are shown. Light gray area delineates the Creek Fire footprint while the dark shaded 
area delineates the total fire perimeter from previous days. The inset shows the location of the daily fire perimeters relative to the entirety of the Creek Fire footprint. 
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Creek Fire and two other large fires in California, contained counter 
rotating vortex pairs and associated high surface winds along the lee 
edges of the fire for up to 9 h and 20 km of fire spread (Lareau et al., 
2022). Although fuel conditions were not evaluated by Lareau et al. 
(2022), the observed vorticity would likely have been initiated by pro-
longed area-wide burning which forces ambient wind flow around the 
fire front to create vorticity (i.e. Countryman, 1964) rather than a thin 
flame zone that is penetrated by surface winds. Sustaining the plume and 
vorticity would then be aided by long-duration heat release from heavy 
fuels across large areas, some of which would be remote from the outer 
fire edge as observed here. The high rates of energy release across the 

burning area are themselves enhanced by the strong fire-induced surface 
winds that ventilate the combustion of solid fuel materials. Thus, the 
growth and energy release from any portion of these fires becomes 
dependent on the atmospheric circulations generated by the heat release 
from the entire fire. 

This explanation is consistent with the changes in heat release pat-
terns observed from September 5 to September 8 (Fig. 6). On September 
5th, fire intensity was typical for most wildfires with heat concentrated 
on the fires perimeter. However, on the largest growth day (September 
6th), this was pattern was reversed, with heat increasing towards the 
interior of the fire. Not only was the greatest heat concentrated away 
from the fire perimeter, but a significant amount of heat was still being 
generated within the fire perimeter from the previous day (Fig. 6). At the 
whole-fire scale, prolonged heat release from the interior would sustain 
the buoyant updrafts in the plume core that interact with the wind, 
moisture, and temperature profiles of the atmosphere. This is a classic 
pattern for a mass fire and the high amount of large, dead biomas 
created from the drought and bark beetle attack along with high tree 
density (that produced large amounts of crown fuels) were critical fac-
tors in developing mass fire behavior as anticipated by Stephens et al. 
(2018). Severe drought during this period exacerbated by climate 
change was also a contributing factor because it reduced fuel moistures 
to even lower levels that further adds to the vulnerability of these forests 
(Williams et al., 2022). 

4.1. Management implications 

Fire behavior exhibited by the Creek Fire during its initial progres-
sion is well outside the capabilities of current-generation fire models. 
Modeling initial spread of the Creek Fire with any conventional fire 
model will result in a dramatic under-prediction in spread rate and area 
burned because these models do not capture the physics that drove the 

Fig. 7. Regression tree output explaining the influence of environmental conditions on fire severity. Colored boxes at the ends of the regression tree branches contain 
categories of fire severity (low, moderate, and high) and percentage of observations in each resulting group. 

Fig. 8. Map of fire severity according to classes based on composite burn index 
(CBI) values including unchanged (CBI 0–0.1), low ( –0.1-1.25), moderate 
(1.25–2.25), and high (2.25–3). The high severity patch with black border 
delineates the largest patch in our dataset (19,592 ha). 

Table 1 
Description of forest condition departure classes (FCD) determined by thresholds 
found for fuels, tree density, and elevation using categorical regression tree 
analysis.  

Class Fuels (Mg ha− 1) Trees ha− 1 Elevation (m) 

FCD-low <46 <232 All elevations 
FCD-low <46 407–693 >2430 
FCD-mod <46 407–693 <2430 
FCD-mod <46 232–407 All elevations 
FCD-high <46 >693 <2430 
FCD-high >46 All tree densities All elevations  
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Creek Fire’s initial spread including post-frontal combustion and fire- 
atmosphere interactions. This outcome is particularly challenging to 
managers who always prioritize firefighter and public safety. With no 
operational fire model able to predict such an event, managers can easily 
underrepresent such events, particularly in areas that experienced 
considerable tree mortality. It should be noted, however, that extreme 
fire behavior associated with plume-dominated fire spread is not limited 

to areas with extensive pre-fire tree mortality (Povak et al., 2020). The 
potential for extreme fire behavior to cause great harm to human life 
was demonstrated when the Creek Fire necessitated the rescue of people 
by National Guard helicopters. The fire trapped visitors at Mammoth 
Pool Reservoir after it jumped the San Joaquin River and the US Na-
tional Guard rescued >100 people from this location. 

An important question regarding mass fire behavior exhibited by the 

Fig. 9. Percentage of overlap area between forest condition departure classes (FCD) and high severity fire patches.  

Fig. 10. ELMFIRE modeled progression of the Creek Fire (blue to red contours) compared to observed fire perimeter (black lines) from September 4 to 8, 2020. (a) 
September 5th 05:50 UTC (b) September 5th 21:42 UTC (c) September 6th 10:50 UTC (d) September 7th 05:33 UTC (e) September 7th 21:36 UTC (f) September 8th 
21:40 UTC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

S.L. Stephens et al.                                                                                                                                                                                                                             



Forest Ecology and Management 518 (2022) 120258

11

Creek Fire is whether the tree mortality event that preceded it could 
have been avoided or reduced in intensity or was it within the natural 
range of variation for these forests? To help answer this question we can 
learn from a severe drought that impacted the forests in southern Cali-
fornia and northern Baja California from 1999 to 2002 (Minnich et al., 
2016). This severe drought and bark beetle attack killed millions of trees 
in mixed conifer and pine dominated forests in the San Bernardino and 
Cleveland National Forests in the US but had a very different impact on 
Jeffrey pine (Pinus jeffreyi)-mixed conifer forests in the Sierra San Pedro 
Matrir (SSPM) in northern Baja California, Mexico (Stephens and Fule, 
2005). Both of these forests are in the Peninsular Mountains with similar 
soils, topography, climate, past fire frequency, and tree species but the 
SSPM does not have any ponderosa pine but includes all other mixed 
conifer tree species (Stephens et al., 2003; Stephens and Gill, 2005; 
Dunbar-Irwin and Safford, 2016). Although these forests are similar 
ecologically their management histories are very different with the 
SSPM never being harvested and fire suppression beginning in 1970, 
versus on the US side of the border, extensive harvesting occurred along 
with 120 years of fire exclusion and suppression (Dunbar-Irwin and 
Safford, 2016; Rivera-Huerta et al., 2016). 

In 1932 mixed Jeffrey pine forests in the San Bernardino Mountains 
had an average density of 95 trees ha− 1 (trees > 12.5 cm dbh) (Minnich 
et al., 1995); current tree density from the SSPM for trees > 10 cm dbh is 
110 trees ha− 1 which is similar to that reported in the San Bernardino 
Mountains before large-scale fire suppression or harvesting (Stephens 
and Fule, 2005). In 1992, mixed Jeffrey pine forests in the San Bernar-
dino Mountains had tree densities 79% larger than those in the early 
1930s mainly because of fire suppression (Minnich et al., 1995). This 
dramatic change in forest density shaped the drought/bark beetle re-
sponses from these areas. Drought and bark beetle mortality 
(1999–2002) increased snag density in the SSPM by approximately 1.0 
snag ha− 1 to an average of 5 ha− 1 (Stephens, 2004) but in southern 
California forests, snag density increased to 125 snags ha− 1 in many 
areas (Sims, 2004; Stephens and Fule, 2005). 

Past forest management on the US side of the Peninsular Mountains 
predisposed these forests to a massive tree die-back but on the Mexican 
side of the border, the forests were able to incorporate these stresses 
with only modest mortality. Neither Californian tree mortality event 
(1999–2002 southern California or 2012–2016 southern Sierra Nevada) 
have historical analogs. Further evidence of the vulnerability of Sierra 
Nevada mixed conifer forests to severe mortality is provided by a recent 
study that found historic forests experienced very little competition 
versus today when 82–95% of mixed conifer forests are in the full oc-
cupancy or imminent mortality classes (North et al., 2022). When Sierra 
Nevada forests were subjected to drought and increased heat stress from 
climate change, tree defenses were compromised and millions of trees 
died but the resilient forests in the SSPM persisted (Stephens and Fule, 
2005; Stephens and Gill, 2005). 

Amazingly, when SSPM Jeffrey pine-mixed conifer forests burned in 
a wildfire the year after a severe drought ended (2003), the combination 
of drought/bark beetles and wildfire only killed 20% of the trees and the 
forest remains in a resilient condition today (Murphy et al., 2021). The 
good news is California mixed conifer and other frequent-fire adapted 
forests can become more resilient if we undertake forest restoration 
(Stephens et al., 2021) at the necessary scales (North et al., 2012; 
Hessburg et al., 2021; Prichard et al., 2021) and intensity (North et al., 
2021,2022). The 2020 Creek Fire shows us how vulnerable our current 
forest conditions are to suffering high tree mortality and offering fuel 
conditions capable of generating firestorms and mass fires from which 
future forest recovery is questionable. 
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